How the U.S. can accelerate AI adoption: Tribe AI + U.S. Department of State

Jaclyn Rice Nelson

Tribe AI co-founder Jaclyn Rice Nelson was recently invited to the U.S. Department of State as part of a series of conversations with experts outside the government on how applied AI can drive impact for inner workings, public policy, and diplomacy. 

Jackie joined Dilawar Syed, State Department Special Representative for Commercial & Business Affairs, in a panel moderated by Joel Nantais, Chief Data Scientist at the U.S. Department of State. Jackie was an investor in Dilawar's previous company, Freshworks, when she worked at CapitalG, Alphabet’s growth equity firm– so this was a reunion of sorts.

Read on for key takeaways from their conversation around how the US can accelerate AI adoption and drive more impact with data and machine learning (ML).

Don’t look for use cases for AI – look for challenges and opportunities in your organization.

Too many organizations, in an attempt to modernize, approach this backwards. They say “okay, we want to do AI” when they should be identifying a specific business challenge or an opportunity to drive impact. Only then does it make sense to examine if this is a place ML can drive results.

Tribe goes through a framework with customers to identify the need, the solution, and the ROI. The team conducts in-depth interviews with the company and their internal teams, examines what data is available, and then assesses whether a successful proof of concept (PoC) would be worth the ROI. Often identifying the right problem means ending up in a very different place than the customer might have envisioned. In reality, the most exciting opportunities in applied AI are not that exciting. It’s work that drives operational efficiencies, reduces manual tasks, and leverages underutilized data.


AI isn’t a magic wand – it’s a sustained, long-term investment that requires a solid foundation.

The truth is that most organizations can’t do AI right now without a serious investment in technical infrastructure and data integrity. For example, Tribe worked with a large food distributor that wanted to use ML to better price their bids and eventually automate the bid process. But when the Tribe team dug into the problem what they found was huge teams of people working across multiple spreadsheets and systems. So before the company could get to the next layer of solutions – like automation – they had to invest in laying a strong foundation of high quality, accessible data. Leadership needs to understand that investing in that stage is critical.

Access to top talent is the biggest challenge facing the US when it comes to AI.

Anyone who’s worked in the startup world has experienced some version of this story: you hire a talented data scientist, train her, and then she leaves for Google or Amazon at 3x compensation. You can’t build companies or innovate without access to world class talent, but as a country the US has been behind in investing in STEM, so this is going to be a generational challenge. We have two choices here: invest in education and wait for new talent to mature or find a way to better utilize the talent currently on the market.

Democratizing access to talent is how we accelerate AI adoption beyond the walls of big tech.

In order to accelerate AI adoption in the United States, we need people with the right technical capabilities to be pointed at the right problems. But the truth is that most companies can’t figure out whom to hire, forget how to train and retain top technical talent. This doesn’t just apply to traditional industries. Even companies that have every technical advantage – Silicon Valley based, huge engineering teams, with top investors – still struggle to hire ML talent.

This is why we need organizations that can bridge this gap – both by providing access to talent and a framework to help organizations drive value with ML. This is the reason Tribe exists. By building a collective of world class technical talent and giving them opportunities to drive impact at companies outside of FAANG, Tribe is working to accelerate AI adoption beyond big tech.

There’s a structural bias towards big companies with lots of data.

You need a lot of high quality data to do machine learning at a level that produces good results, so there’s a natural structural bias towards companies that have access to lots of data – meaning larger tech companies. This trend is self fulfilling: these companies continue to do more machine learning and so continue to be more advanced and able to hire top talent and so on.

One way to solve this is to think about ways we can make data more open and available, so any entrepreneur with a good idea can have a sandbox to experiment in. This isn’t just a business challenge, but a national security challenge. The more roadblocks there are to innovation, the more we fall behind the global community.

AI is most valuable as a tool for augmenting human intelligence, not replacing it.

In fields that are heavily reliant on human decision making, intuition, and relationships – like diplomacy or private investing – one of the most valuable roles of machine learning is to use data to confirm hypotheses.

And it’s not just private data that gives you an edge here. Tribe has done work leveraging public data – census data, electricity data, water records – to confirm or disprove hypotheses around the private investing market and find areas that might be more or less attractive for investment in a given industry. And, when it comes to private data, there’s a wealth of insights to be uncovered just by doing the hard work of stitching together a thousand different spreadsheets to make that data more accessible. This kind of work frees people to do the work that matters instead of sifting through volumes of content.

Building diverse teams is critical to mitigating bias in the field of AI.

There are really two dimensions to mitigating bias in AI: the data and the people who work on building the models. On the data side, the answer is simpler: we need broader and more diverse data sets. When it comes to talent, the only fix is building more diverse teams. We’ve talked about how hard it is to hire and then, on top of that, trying to build a diverse team in a field that’s predominantly white and male can feel like a nearly impossible task.

At Tribe, the composition of the network looks really different from most companies. Diversity is part of Tribe’s DNA, not just because it’s the right thing to do, but because diverse perspectives and skillsets lead to better outcomes. Tribe has set out to build the world’s best network of ML talent, which means a wide variety of experts not just across technical areas, but also backgrounds, solving both the talent and diversity gaps for companies in the process. The truth is this is a problem that’s too great for most companies to solve on their own.

Related Stories

Applied AI

What the OpenAI Drama Taught us About Enterprise AI

Applied AI

7 Strategies to Improve Customer Care with AI

Applied AI

AI Consulting in Finance: Benefits, Types, and What to Consider

Applied AI

7 Effective Ways to Simplify AI Adoption in Your Company

Applied AI

AI and Predictive Analytics in Investment

Applied AI

AI Consulting in Healthcare: The Complete Guide

Applied AI

AI-Driven Digital Transformation

Applied AI

AI and Blockchain Integration: How They Work Together

Applied AI

Everything you need to know about generative AI

Applied AI

10 Expert Tips to Improve Patient Care with AI

Applied AI

How AI Improves Knowledge Process Automation

Applied AI

Leveraging Data Science – From Fintech to TradFi with Christine Hurtubise

Applied AI

Current State of Enterprise AI Adoption, A Tale of Two Cities

Applied AI

AI in Construction in 2024 and Beyond: Use Cases and Benefits

Applied AI

How to Reduce Costs and Maximize Efficiency With AI in Finance

Applied AI

Key Takeaways from Tribe AI’s LLM Hackathon

Applied AI

State of AI: Adoption, Challenges and Recommendations by Tribe AI

Applied AI

How AI Enhances Real-Time Credit Risk Assessment in Lending

Applied AI

AI in Finance: Common Challenges and How to Solve Them

Applied AI

Common Challenges of Applying AI in Insurance and Solutions

Applied AI

Machine Learning in Healthcare: 7 real-world use cases

Applied AI

How to Optimize Supply Chains with AI

Applied AI

AI Diagnostics in Healthcare: How Artificial Intelligence Streamlines Patient Care

Applied AI

What our community of 200+ ML engineers and data scientist is reading now

Applied AI

AI Security: How to Use AI to Ensure Data Privacy in Finance Sector

Applied AI

Tribe welcomes data science legend Drew Conway as first advisor 🎉

Applied AI

Top 5 AI Solutions for the Construction Industry

Applied AI

Making the moonshot real – what we can learn from a CTO using ML to transform drug discovery

Applied AI

A Deep Dive Into Machine Learning Consulting: Case Studies and FAQs

Applied AI

10 Common Mistakes to Avoid When Building AI Apps

Applied AI

AI in Portfolio Management

Applied AI

A Gentle Introduction to Structured Generation with Anthropic API

Applied AI

AI Implementation in Healthcare: How to Keep Data Secure and Stay Compliant

Applied AI

AI in Private Equity: A Guide to Smarter Investing

Applied AI

AI in Banking and Finance: Is It Worth The Risk? (TL;DR: Yes.)

Applied AI

A Guide to AI in Insurance: Use Cases, Examples, and Statistics

Applied AI

Navigating the Generative AI Landscape: Opportunities and Challenges for Investors

Applied AI

How AI is Cutting Healthcare Costs and Streamlining Operations

Applied AI

Write Smarter, Not Harder: AI-Powered Prompts for Every Product Manager

Applied AI

How AI Enhances Hospital Resource Management and Reduces Operational Costs

Applied AI

AI for Cybersecurity: How Online Safety is Enhanced by Artificial Intelligence

Applied AI

How to Evaluate Generative AI Opportunities – A Framework for VCs

Applied AI

The Secret to Successful Enterprise RAG Solutions

Applied AI

Tribe's First Fundraise

Applied AI

How to Improve Sales Efficiency Using AI Solutions

Applied AI

Top 9 Criteria for Evaluating AI Talent

Applied AI

AI in Customer Relationship Management

Applied AI

10 AI Techniques to Improve Developer Productivity

Applied AI

Understanding MLOps: Key Components, Benefits, and Risks

Applied AI

How to Enhance Data Privacy with AI

Applied AI

AI Consulting in Insurance Industry: Key Considerations for 2024 and Beyond

Applied AI

Self-Hosting Llama 3.1 405B (FP8): Bringing Superintelligence In-House

Applied AI

How to Seamlessly Integrate AI in Existing Finance Systems

Applied AI

Generative AI: Powering Business Growth across 7 Key Operations

Applied AI

How to Build a Data-Driven Culture With AI in 6 Steps

Applied AI

Scalability in AI Projects: Strategies, Types & Challenges

Applied AI

Top 10 Common Challenges in Developing AI Solutions (and How to Overcome Them)

Applied AI

How 3 Companies Automated Manual Processes Using NLP

Applied AI

A primer on generative models for music production

Applied AI

Key Generative AI Use Cases From 10 Industries

Applied AI

Why do businesses fail at machine learning?

Applied AI

Top 8 Generative AI Trends Businesses Should Embrace

Applied AI

The Hitchhiker’s Guide to Generative AI for Proteins

Applied AI

8 Prerequisites for AI Transformation in Insurance Industry

Applied AI

Segmenting Anything with Segment Anything and FiftyOne

Applied AI

AI in Construction: How to Optimize Project Management and Reducing Costs

Applied AI

Using data to drive private equity with Drew Conway

Applied AI

3 things we learned building Tribe and why project-based work will change AI

Applied AI

Thoughts from AWS re:Invent

Applied AI

No labels are all you need – how to build NLP models using little to no annotated data

Applied AI

Welcome to Tribe House New York 👋

Applied AI

How to build a highly effective data science program

Applied AI

From PoC to Production: Scaling Bright’s Training Simulations with Tribe AI & AWS Bedrock

Applied AI

7 Prerequisites for AI Tranformation in Healthcare Industry

Applied AI

How data science drives value for private equity from deal sourcing to post-investment data assets

Applied AI

Announcing Tribe AI’s new CRO!

Applied AI

How to Measure and Present ROI from AI Initiatives

Applied AI

7 Key Benefits of AI in Software Development

Applied AI

AI Implementation: Ultimate Guide for Any Industry

Applied AI

10 ways to succeed at ML according to the data superstars

Applied AI

AI and Predictive Analytics in the Cryptocurrency Market

Applied AI

How to Reduce Costs and Maximize Efficiency With AI in Insurance

Applied AI

Advanced AI Analytics: Strategies, Types and Best Practices

Applied AI

8 Ways AI for Healthcare Is Revolutionizing the Industry

Applied AI

5 machine learning engineers predict the future of self-driving

Applied AI

Best Practices for Integrating AI in Healthcare Without Disrupting Workflows

Applied AI

An Actionable Guide to Conversational AI for Customer Service

Applied AI

How AI for Fraud Detection in Finance Bolsters Trust in Fintech Products

Applied AI

How to Measure ROI on AI Investments

Applied AI

How to Use Generative AI to Boost Your Sales

Get started with Tribe

Companies

Find the right AI experts for you

Talent

Join the top AI talent network

Close
CO-FOUNDER & CEO
Jaclyn Rice Nelson
Jackie spent the majority of her career at Google partnering with enterprise companies and incubating new products. She was an early employee at CapitalG, Alphabet’s growth equity firm, where she built a fifty-thousand-person expert network and advised growth-stage tech companies like Airbnb on scaling their technical infrastructure, data security, and leveraging machine learning for growth.